
Accelerator-in-Switch: a novel cooperation framework for
FPGAs and GPUs

− Building a Virtual Heterogeneous Computing System −

2018.12
Hideharu Amano
Keio University

This work is based on results obtained from a project commissioned by the New Energy and
Industrial Technology Development Organization (NEDO)
Special Thanks to T.Kudoh, R.Takano, T.Ikegami, M.Koibuchi, A.B. Ahmed, K.Hironaka,
K.Musha, K.Azegami, K.Iizuka, Y.Yamauchi, M.Yamakura and other members of the project.

FPGA computing in cloud
• High Performance FPGAs are available:

• High computational power: Intel Stratix-10
• With a large memory: Xilinx UltraScale+ with UltraRAM
• But they are expensive for most users to keep themselves.

• Programming environment is improved:
• Open-CL is widespread for computational usage.
• Vivado-HLS is popularly used for general usage.

→ FPGAs in cloud:
More flexible and power efficient than using GPU.

• FPGA in the Cloud: Booting Virtualized Hardware Accelerators with
OpenStack [FCCM2014]

• Microsoft Catapult [ISCA2014][HEART2017]
• FPGA Supervessel Cloud by IBM[ICFPT2016]
• Amazon EC2 F1 Instance [https://aws.amazon.com/ec2/instance-types/f1/]

Conventional FPGA-in-Cloud
Host
PC

FP
GA

PCIe

Host
PC

PCIe

Host
PC

PCIe
…

FP
GA

FP
GA

…

High-Performance FPGAs are attached into each Host.

• The total cost becomes large.
• High performance FPGAs are still expensive.

• The size of FPGA is limited.
• Multiple FPGAs cannot be used together.

Host
PC

FP
GA

PCIe

FP
GA

FP
GA

FP
GA

FP
GA

FP
GA

FP
GA

Our Proposal : Virtual Large FPGA

A lot of cost-efficient middle-scale FPGAs are
tightly connected.

They can be treated as if they were a single FPGA in
HLS description level.

Higher performance per cost than conventional
FPGA in cloud.

Practically infinite resource is used.
Separated into a number of virtual FPGAs and
shared by the multiple users.

Flow-in-Cloud (FiC) is the first prototype.

Microsoftʼs Catapult V1/V2
[Putnum：ISCA-2014][Caulfield：Micro-2016]

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA
FE FFE0 FFE1 Compress MLS0 MLS1 MLS2

Rank computation for Web search on Bing.
Task Level Macro-Pipelining (MISD)
FE: Feature Extraction
FFE: Free Form Expression: Synthesis of feature values
MLS: Machine Learning Scoring

2-Dimensional Mesh is formed (8x6) for 1 cluster.

FPGA: Intel Stratix V

10Gbps network is upgraded to 40Gbps network in V2

https://euroexa.eu/
Recent FPGA supercomputers

(For example Rikenʼs)

Todayʼs talk
• Building a virtual large FPGA

• Concept 1: Use middle-range FPGAs and common serial links
• Concept 2: Virtualize at the level of HLS description
• Concept 3: Couple accelerators and a switch tightly in an FPGA

→ Accelerator-in-Switch
• Our prototype: FiC (Flow-in-Cloud)
• Next step: Building a virtual heterogeneous computing system

28nm

Virtex-7

2000000LC

Stratix-V
/E/GX/GS/GT
359200ALM

Cyclone V
/E/GX/GS/GT
301000LE

Arria-IV
174000LE

Kintex-7
480000LC

Artix-7
360000LC

20nm 16nm

Virtex-Ultrascale

5541000LC

Virtex-Ultrascale＋

3780000LC

Kintex-Ultrascale
1451000LC

Kintex-Ultrascale＋
1143000LC

Arria-10
ARM＋FPU

Stratix-10
ARM＋FPU

10nm

Xilinx
High-end

Intel
High-end

Intel
Mid-range

Xilinx
Mid-range

Intel
Low-cost

Xilinx
Low-cost

XCKUXX

XCVUXX

XCVUXXP

XCKUXXP

Here, we will omit “XC”.
KU085 means XCKU085.

High-end, Low-cost and Mid-range FPGAs

1.Multiple middle scale FPGAs vs. a single powerful FPGA

• Most of price/resource of KU085 is the lowest.
• Two KU085s can provide 1.5 LCs of KU115 with almost the same

price.
• Five KU085s can provide almost the same LCs of VU440 with

about 1/3 price.

Kintex
Ultrascale
KU085

Kintex
Ultrascale
KU115

Virtex
Ultrascale
VU440

Virtex
Ultrascale+
VU9P

Logic Cell (K) 1088 (3.4) 1451(4.3) 5541(10.6) 2586(6.69)
DSP 4100(0.9) 5520(1.14) 2880(20.4) 6840(2.53)
BRAM(Mb) 56.9(65.4) 75.9(83.0) 88.6(664.6) 345.9(50.05)
Price ($) 3720 6297 58890 17314

Price is from digikey
() is price for each unit.

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400 1600 1800

Price/KLC($) vs. Logic Cells

Virtex Ultrascale+

Kintex Ultrascale+

Virtex Ultrascale

Kintex Ultrascale

KCells

Price/KLCs($)

4

8

12

16

20

24
Price/KLC is increased with
its size, because high-end

FPGAs have special facilities

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600 700

DSP vs. Price (X $100 ）

Virtex Ultrascale+

Kintex Ultrascale+ Virtex Ultrascale

Kintex Ultrascale

X $100

DSP
Kintex Ultrascale has

surprisingly large
number of DSPs

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

BRAM(Mbit) vs. Price ($100)

Virtex Ultrascale+

Kintex Ultrascale+
Virtex Ultrascale

Kintex Ultrascale

X $ 100

Mbit

BRAM vs. Price is
almost linear,but

Kintex Ultrascale is
cost effective Virtex Ultrascale+ has

a large memory by
UltraRAM but

expensive

Cost including serial links
• KU085 has the best price per resource!

• Logic cells: $3.4 for 1K LC.
• DSP: $0.9 for a DSP.
• BRAM: $65.4 for 1Mb.

• Letʼs use a number of common serial links GTH (12.5Gbps).
• Of course, faster serial links (32Gbps GTY, 58GbpsGTM) are available, but

cost becomes high.
• Firefly cable ($59 for 4 links) is available.

• No drivers/receivers are needed.
• Aurora IPs from Xilinx can be used.

• Conclusion: “Using multiple middle scale FPGAs” is a cost
efficient solution.
• Open issue

• Cost of switches
• Operational Speed

HLS 1

HLS 2

HLS 3

HLS 4 HLS 1

HLS 2

HLS 3

HLS 4

A single FPGA
FPGA

FPGA
FPGA

2. Virtualization at the IP based HLS design

HLS is originally described with a set of IPs:
Division is easy except the problem of handshake.

AXI
stream

Interface
is difficult

The handshake problem

HLS1 HLS2

FPGA1
FPGA2

Data

Ready

• Valid signal can be omitted by checking the data arrival.
• Without a ready signal, the possibility of input FIFO overflow remains.

Overriding the handshake problem
• Virtual ready wire: providing a virtual wire between the receiver

and the sender.
• Direct approach but the overhead of synchronization may increase.

• Providing a required memory inside HLS module.
• Convenient for streaming processing but the HLS programmer must

take care of it.
• A pre-processor can insert delay or synchronization code

according to the evaluation results from Vivado HLS.
→ All methods require fixed latency/throughput communication.

Our approach: circuit switching with Static Time Division Multiplexing.

Vivado HLS evaluates
the number of clock cycle
in a loop.
→Such information helps
override the handshake
problem.

An example: Streaming processing

HLS 1 HLS 2 HLS 3 HLS 4 HLS 5

200 data /
5000 clock
cycles

200 data /
5000 clock
cycles

200 data /
10000 clock
cycles

100 data /
10000 clock
cycles

FIFO
OVF

HLS 1 HLS 2 HLS 3 HLS 4 HLS 5

200 data /
10000 clock
cycles

200 data /
10000 clock
cycles

200 data /
10000 clock
cycles

100 data /
10000 clock
cycles

Delay Delay

3. Integrating switch and accelerator tightly in an
FPGA: Accelerators in Switch
• What is the benefit of FPGAs compared to GPUs？

• Switching capability is much superior to that of GPUs.
• Of course, recent GPUs provide NVLinks or other powerful interface.

• However, they are only for expensive GPUs, and the function is limited.
• Various type of switches can be implemented on FPGAs.
• FPGAs are widely used for high speed switches and network interface.

• Tightly coupled switch and accelerator in an FPGA.
• Separation with Partial Reconfiguration
→ Accelerator in Switch [FPL2017]

An example of
AiS (PEACH3)

• Implemented as a module on
the Avalon MM bus.

• Shared memory is used for exchange
of data

• Reduction / Locally Essential Tree
generation were implemented in the
AiS part.

Intel Stratix V

The execution time for LET generation

21

Th
e

ex
ec

ut
io

n
tim

e
(s

ec
)

The number of bodies (N)

Todayʼs talk
• Building a virtual large FPGA

• Concept 1: Use middle-range FPGAs and common serial links
• Concept 2: Virtualize at the level of HLS description
• Concept 3: Couple accelerators and a switch tightly in an FPGA

→ Accelerator-in-Switch
• Our prototype: FiC (Flow-in-Cloud)
• Next step: Building a virtual heterogeneous computing system

FPGAFPGAFPGAFPGAFPGAFPGA

FPGAFPGAFPGAFPGAFPGAFPGAFPGAFPGA
STDM switch STDM switch STDM switch STDM switch

FPGAFPGA
STDM switch STDM switch STDM switch STDM switch

Circuit switching network

HLS modules

FiC-SW
Host CPU

I/O board
KCU1500
I/O board
KCU1500

High Speed
Serial Links

Flow-in-Cloud (FiC) overview

Flow-in-Cloud (FiC) SW Board

FiC Network
8x4 9.9Gbps

Ethernet

Control Network

Application
Logic Area

SW Control board
Raspberry Pi 3 model B

FPGA
Xilinx Kintex

Ultrascale XCKU095

Rusberry Pi 3

FPGA KU085/095

STDM
Switch

HLS modules

DDR-4 SDRAM 16Gb

Here, we call each
link “channel”,

and a bundle of
4 channels “lane”.

A board has 8 lanes
each of which has
4 channels

DDR-4 SDRAM 16Gb

Xilinx
Aurora

Xilinx
Aurora

STDM
switch

8.5Gbps x32 (4 chan. x 8 lane)

HLS module
PR domain

Static domain

8.5Gbps x32 (4 chan. x 8 lane)

Raspi3

Ethernet

DRAM

170bit 170bit

100MHz

100MHz

9.9Gbps
9.9
Gbps

Block Diagram of FiC

STDM (Static Time Division Multiplexing)

26

Port1

Port2

Port3

Port 4

Port1

Port2

Port3

Port 4

S1
S2
S3
S4
S1
S2
S3
S4

S1
S2
S3
S4
S1
S2
S3
S4An input register is selected

according to the pre-loaded
table, and transferred to the output
register.

Input data arrive at each port
cyclically registered.

Output data are cyclically
sent to the output port

An example of
4x4 with four slots

STDM (Static Time Division Multiplexing)

27

Port1

Port2

Port3

Port 4

Port1

Port2

Port3

Port 4

S1
S2
S3
S4
S1
S2
S3
S4

S1
S2
S3
S4
S1
S2
S3
S4

P2S1 P2S2 P1S3 P3S4 P2S1 P2S2P1S3 P3S4…. ….port1

• A circuit is established between
source and destination.

• Latency and bandwidth are kept.

• Latency = 55+2 x (# of slots)
clock cycles

Multicast using the STDM

Port1

Port2

Port3

Port 4

Port1

Port2

Port3

Port 4

S1
S2
S3
S4

S1
S2
S3
S4

S1
S2
S3
S4
S1
S2
S3
S4

For internal usage

Multicast is done
efficiently.

Multiple outputs
can receive the
same data in a
specific slot.

The resource usage

GT: High speed link

Enough design is remained for HLS design.

4 switches are provided for each channel.

How boards should be connected?
• Any type of interconnection is OK.
• However, there are two limitations:

• 4 channels are bundled into a lane.
• For HLS modules, the size should be less than four 9x9 switches.

• 4 channels in a lane are used independently.
• An HLS module has four independent ports, or four HLS modules with a port are

implemented at maximum.
Network with 8-degree
→ Natural solution: 4 dimensional torus

The diameter is large.
→ Alternative: Full mesh Connected Cycles（FCC)

Dragonfly-like network but more economical.

4-DTorus: the case of 3x3x3x3=81boards

0***
1***

2***

０ １ ２０ ０ ０

１ １ １

２ ２ ２０ １ ２

０ １ ２

０ １ ２０ ０ ０

１ １ １

２ ２ ２０ １ ２

０ １ ２

０ １ ２０ ０ ０

１ １ １

２ ２ ２０ １ ２

０ １ ２

０

０

０

０ ０

０

０ ０

０１

１ １ １

１

１

１

１ １

１

２

２ ２ ２

２

２

Suitable if local traffic is dominant.
Diameter is relatively large: 8

4x24 Full mesh Connected Cycles (FCC)

01 10

2..7 2..7

01

2..7

10

2..7

… …

… …

x4

x4
x4 x4

6x4 6x4

6x46x4

……

24 Cycles are
connected
in full-mesh

96 boards are connected

3x3x3x3 Torus 4x24 FCC
Number of boards 81 94
Slots (Bit
complement/tornado/reversal)

1 1

Slots (All to all) 12 8
Diameter 8 5
Max Latency (All to all nsec) 5360 3550

Estimation of the network performance

Topology Optimization for Traffic Pattern*

Circuit Switching

0 0 1 0 2 1 3
0 2 1 3

4 5

0 2 1 3

4 5

node swap

indirect path 6

Recursive Partition

of slots = 2
of switches = 12
of links = 18
Avg. SW hops = 1.313

of slots = 4
of switches = 44
of links = 78
Avg. SW hops = 2.563

of slots = 9
of switches = 118
of links = 184
Avg. SW hops = 4.543

of slots = 12
of switches = 606
of links = 1063
Avg. SW hops = 5.329

Generated topo. with # of slots Result: comparison with mesh
Avg. hop count Reduced
by up to 83.7%

of switches reduced
by up to 56.3%

[*] Yao Hu, Tomohiro Kudoh, Michihiro Koibuchi, "A Case of Electrical Circuit Switched Interconnection Network for Parallel
Computers", The 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’17), pp.
276-283, Taipei Taiwan, December 18-20, 2017.

This slide
is supported
from Dr.Hu
and Prof.Koibuchi

Switch/Link synthesis HLS module 1 synthesis

Setting the PR region

Read

opt_design, place_design
route_design

HLS1 bitmap generation
Make PR region into blackbox
Lock wires in the static region

Basic Design

HLS module 2
synthesis

opt_design,
place_design
route_design

HLS2 bitmap
generation

HLS module 3
synthesis

opt_design,
place_design
route_design

HLS３ bitmap
generation

Read into the blackbox

Design of HLS modules can be done
only with this part.

Partial Reconfiguration for separating HLS from switches.

PR region for HLS module

Now, 3 lanes (12 channels)
are used.

37

The current FiC system

Control
Server

SW

Users

FPGA Configuration
and Table information
(*.json)

FPGA

FPGA

FPGA

FPGA

SW

SW

SW

SW

Results

FiC Board Control
Network

Deliver of Configuration Deliver of Configuration
data with RESTful API
through HTTP

Internet /
Intranet

GUI control from remote terminals

FiC Network

File configured

Now under
configuration

GUI from remote terminals

input[0]
Input[1]

input[M-1]

・
・・

weight[0][0]

weight[0][1]

weight[N-1][M-1]

・
・
・
・

・
・

weight[0][1]

output[0]
output[1]

output[N-1]

・
・・

Size (N, M) multiply-add

M

N
×
M

N

register

registerInput buffer (x2)

Weight buffer

PE[0]

PE[1]

PE[N-1]

・
・
・
・
・
・

bias[0]

bias[N-1]

・
・・

Bias buffer

Output buffer(x2)

ReLu

Implementation
Example
(LeNet Fully
Connected layer)

Fully connection layer of the Lenet
Frequency
（MHｚ）

Power（W) image/sec GOPS GOPS/W

1 board 100 17.89 23551 120.58 6.74
4 boards 100 71.56 94226 482.34 6.74

Frequency
（MHz）

Power（W) GOPS GOPS/W

FiC 4boards 100 71.56 482.34 6.74
Stratex-V [1] 120 25.8 136.5 5.29
KCU060 [2] 200 25.0 172.0 6.88

[1] N.Suda, V.Chandra, G.Dasika, et.al “Throughput-optimized open-based FPGA Accelerator for large-scale
comvolutional neural networks,” FPGA2016.
[2] C.Zhang, Z.Fang, P.Zhao, P.Pan, J.Cong, “Caffeine: Towards uniformed representation and acceleration
for deep convolutional neural networks,” ICCCAD2017.

Higher performance is achieved with the similar power efficiency compared with
a single FPGA system.

Todayʼs talk
• Building a virtual large FPGA

• Concept 1: Use middle-range FPGAs and common serial links
• Concept 2: Virtualize at the level of HLS description
• Concept 3: Couple accelerators and a switch tightly in an FPGA

→ Accelerator-in-Switch
• Our prototype: FiC (Flow-in-Cloud)
• Next step: Building a virtual heterogeneous computing system

Fi
C

sy
st

em

Next Step:
Accelerator bare-metal cloud

FPGA
FPGA

FPGA
FPGA

Fi
C

Ne
tw

or
k

GPU
GPU

GPU
GPU
MEM
MEM

MEM
MEM

Se
rv

er
 N

et
wo

rk

Data

Data

Sensors

FPGA

FPGA
GPU MEM

FPGA

Se
rv

er
 N

et
wo

rk

Data

Data

Sensors GPU
GPU
GPU
GPU

GPU MEM

FLOW-OS is now under development by the national institute of
industrial science and technology (AIST)

Conclusion
● A virtual large FPGA:

○ Scalable performance with
○ similar power/performance and
○ smaller cost/performance compared to conventional FPGA-in-clouds.

● Future direction
→ Accelerator bare metal cloud
Integration of FPGAs and GPUs.

